Publications

2020

CHARMM-DYES: Parameterization of fluorescent dyes for use with the CHARMM force field. R.A. Shaw, T. Johnston-Wood, B. Ambrose, T.D. Craggs and J.G. Hill, J. Chem. Theory Comput., 2020, 16, 7817.

An ab initio investigation of alkali-metal non-covalent bonds B···LiR and B···NaR (R = F, H or CH3) formed with simple Lewis bases B: the relative inductive effects of F, H and CH3. I. Alkorta, J.G. Hill and A.C. Legon, Phys. Chem. Chem. Phys., 2020, 22, 16421.

2019

A linear-scaling method for non-covalent interactions: An efficient combination of absolutely localized molecular orbitals and a local random phase approximation approach. R.A. Shaw and J.G. Hill, J. Chem. Theory Comput., 2019, 15, 5352.

Syntheses, structures, and infrared spectra of the hexa(cyanido) complexes of silicon, germanium and tin. Z.M. Smallwood, M.F. Davis, J.G. Hill, L.R. James and P. Portius, Inorg. Chem., 2019, 58, 4583.

A simple model for halogen bond interaction energies. R.A. Shaw and J.G. Hill, Inorganics, 2019, 7, 19.

Non-bonding pairs in cyclic thioethers: Electrostatic modelling and ab initio calculations for complexes of 2,5-dihydrothiophene, thietane and thiirane with hydrogen fluoride. J.G. Hill and A.C. Legon, Int. J. Quantum Chem., 2019, 119, e25885.

2018

On the development of accurate Gaussian basis sets for f-block elements. K.A. Peterson and J.G. Hill, Annual Reports in Computational Chemistry, 2018, 14, 47.

Interplay between hydrogen bonding and n→π* interaction in an analgesic drug salicin. S.K. Singh, P.R. Joshi, R.A. Shaw, J.G. Hill and A. Das, Phys. Chem. Chem. Phys., 2018, 20, 18361.

Midbond basis functions for weakly bound complexes. R.A. Shaw and J.G. Hill, Mol. Phys., 2018, 116, 1460.

Alkali-metal trihalides: M+X3- ion pair or MX-X2 complex? Z. Sun, K.B. Moore III, J.G. Hill, K.A. Peterson, H.F. Schaefer III and R. Hoffmann, J. Phys. Chem. B, 2018, 122, 3339.

Structures and heats of formation of simple alkaline earth metal compounds II: Fluorides, chlorides, oxides and hydroxides for Ba, Sr, and Ra. M. Vasiliu, J.G. Hill, K.A. Peterson and D.A. Dixon, J. Phys. Chem. A, 2018, 122, 316.

2017

Gaussian basis sets for use in correlated molecular calculations. XI. Pseudopotential-based and all-electron relativistic basis sets for alkali metal (K–Fr) and alkaline earth (Ca–Ra) elements. J. G. Hill and K.A. Peterson, J. Chem. Phys., 2017, 147, 244106.

UV photodissociation dynamics of CHI2Cl and its role as a photolytic precursor for a chlorinated Criegee intermediate. K. M. Kapnas, B. W. Toulson, E. S. Foreman, S. A. Block, J. G. Hill and C. Murray, Phys. Chem. Chem. Phys., 2017, 19, 31039.

Electrostatic potential and a simple extended electric dipole model of hydrogen fluoride as probes of non-bonding electron pairs in the cyclic ethers 2,5-dihydrofuran, oxetane and oxirane. J. G. Hill and A. C. Legon, Crystals, 2017, 7, 261.

Prescreening and efficiency in the evaluation of integrals over ab initio effective core potentials. R. A. Shaw and J. G. Hill, J. Chem. Phys., 2017, 147, 074108.

Approaching the Hartree-Fock limit through the complementary auxiliary basis set singles correction and auxiliary basis sets. R. A. Shaw and J. G. Hill, J. Chem. Theory Comput., 2017, 13, 1691.

Interplay among electrostatic, dispersion, and steric interactions: Spectroscopy and quantum chemical calculations of π-hydrogen bonded complexes. S. Kumar, S. K. Singh, J. K. Vaishnav, J. G. Hill and A. Das, Chem. Phys. Chem., 2017, 18, 828.

2016

Halogen bonding with phosphine: Evidence for Mulliken inner complexes and the importance of relaxation energy. R. A. Shaw, J. G. Hill and A. C. Legon, J. Phys. Chem. A, 2016, 120, 8461.

Near-UV photodissociation dynamics of CH2I2. B. W. Toulson, J. P. Alaniz, J. G. Hill and C. Murray, Phys. Chem. Chem. Phys., 2016, 18, 11091.

Optimized basis sets for the enviroment in the domain-specific basis set approach of the incremental scheme. T. Anacker, J. G. Hill and J. Friedrich, J. Phys. Chem. A, 2016, 120, 2443.

2015

Auxiliary basis sets for density fitting in explicitly correlated calculations: The atoms H-Ar. S. Kritikou and J. G. Hill, J. Chem. Theory Comput., 2015, 11, 5269.

Halogen bonding in the gas phase: A comparison of the iodine bond in B···ICl and B···ICF3 for simple Lewis bases B. J. G. Hill, A. C. Legon, D. P. Tew and N. R. Walker in Topics in Current Chemistry: Halogen Bonding I; Springer; 2015, p. 43.

On the directionality and non-linearity of halogen and hydrogen bonds. J. G. Hill and A. C. Legon, Phys. Chem. Chem. Phys., 2015, 17, 858.

2014

Correlation consistent basis sets for explicitly correlated wavefunctions: Pseudopotential-based basis sets for the post-d main group elements Ga – Rn. J. G. Hill and K. A. Peterson, J. Chem. Phys., 2014, 141, 094106.

The halogen bond in thiirane···ClF: An example of a Mulliken inner complex. J. G. Hill, Phys. Chem. Chem. Phys., 2014, 16, 19137.

Interaction in the indole···imidazole heterodimer: Structure, Franck-Condon analysis and energy decomposition. J. G. Hill and A. Das, Phys. Chem. Chem. Phys., 2014, 16, 11754.

(π*,σ*), (σ*,π*) and Rydberg triplet excited states of hydrogen peroxide and other molecules bearing two adjacent heteroatoms. J. G. Hill and G. Bucher, J. Phys. Chem. A, 2014, 118, 2332.

Experimental electron density and neutron diffraction studies on the polymorphs of sulfathiazole. I. Sovago, M. Gutmann, J. G. Hill, H. M. Senn, L. Thomas, C. Wilson and L. J. Farrugia, Crystal Growth & Design, 2014, 14, 1227.

2013

Explicitly correlated thermochemistry of transition metal species. D. H. Bross, J. G. Hill, H.-J. Werner and K. A. Peterson, J. Chem. Phys., 2013, 139, 094302.

Auxiliary basis sets for density fitted second-order Møller-Plesset perturbation theory: Weighted core-valence correlation consistent basis setsvfor the 4d elements Y-Pd. J. G. Hill, J. Comput. Chem., 2013, 34, 2168.

Ab initio ro-vibronic spectroscopy of the group 11 cyanides: CuCN, AgCN, and AuCN. J. G. Hill, A. O. Mitrushchenkov and K. A. Peterson, J. Chem. Phys., 2013, 138, 134314.

Theoretical insights into the nature of halogen bonding in prereactive complexes. J. G. Hill and X. Hu, Chem. Eur. J., 2013, 19, 3620.

Basis set dependence of interaction energies computed using composite post-MP2 methods. J. A. Platts, J. G. Hill, K. E. Riley, J. Řezác and P. Hobza, J. Chem. Theory Comput., 2013, 9, 330.

Gaussian basis sets for molecular applications. J. G. Hill, Int. J. Quantum Chem., 2013, 113, 21.

2012

Assessment of the performance of MP2 and MP2 variants for the treatment of noncovalent interactions. K. E. Riley, J. A. Platts, J. Řezác, P. Hobza and J. G. Hill, J. Phys. Chem. A, 2012, 116, 4159.

Explicitly correlated coupled cluster calculations for molecules containing group 11 (Cu, Ag, Au) and 12 (Zn. Cd, Hg) elements: Optimized complementary auxiliary basis sets for valence and core-valence basis sets. J. G. Hill and K. A. Peterson, J. Chem. Theory Comput., 2012, 8, 518.

2011

Application of explicitly correlated coupled-cluster methods to molecules containing post-3d main group elements. K. A. Peterson, C. Krause, H. Stoll, J. G. Hill and H.-J. Werner, Mol. Phys., 2011, 109, 2607.

Accurate ab initio ro-vibronic spectroscopy of the X2∏ CCN radical using explicitly correlated methods. J. G. Hill, A. Mitrushchenkov, K. E. Yousaf and K. A. Peterson, J. Chem. Phys., 2011, 135, 144309.

Auxiliary basis sets for density fitting second-order Møller-Plesset perturbation theory: Correlation consistent basis sets for the 5d elements Hf-Pt. J. G. Hill, J. Chem. Phys., 2011, 135, 044105.

On the effectiveness of CCSD(T) complete basis set extrapolations for atomization energies. D. Feller, K. A. Peterson and J. G. Hill, J. Chem. Phys., 2011, 135, 044102.

2010

Calibration study of the CCSD(T)-F12a/b methods for C2 and small hydrocarbons. D. Feller, K. A. Peterson and J. G. Hill, J. Chem. Phys., 2010, 133, 184102.

Correlation consistent basis sets for explicitly correlated wavefunctions: Valence and core-valence basis sets for Li, Be, Na, and Mg. J. G. Hill and K. A. Peterson, Phys. Chem. Chem. Phys., 2010, 12, 10460.

Non-covalent interactions using local correlation methods: energy partitioning, geometry optimisation and frequency calculations. J. A. Platts and J. G. Hill, Mol. Phys., 2010, 108, 1497.

Correlation consistent basis sets for molecular core-valence effects with explicitly correlated wavefunctions: The atoms B-Ne and Al-Ar. J. G. Hill, S. Mazumder and K. A. Peterson, J. Chem. Phys., 2010, 132, 054108.

Platinum complexes as anti-cancer drugs: modeling of structure, activation and function. K. Gkionis, M. Hicks, A. Robertazzi, J. G. Hill and J. A. Platts, in Quantum Biochemistry: C. F. Matta, Ed.; Wiley-VCH, Weinheim; 2010, p. 723.

2009

Extrapolating MP2 and CCSD explicitly correlated correlation energies to the complete basis set limit with first and second row correlation consistent basis sets. J. G. Hill, K. A. Peterson, G. Knizia and H.-J. Werner, J. Chem. Phys., 2009, 131, 194105.

Local electron correlation descriptions of the intermolecular stacking interactions between aromatic intercalators and nucleic acids. J. G. Hill and J. A. Platts, Chem. Phys. Lett., 2009, 479, 279.

Performance of Becke’s half-and-half functional for non-covalent interactions: energetics, geometries and electron densities. K. Gkionis, J. G. Hill, S. P. Oldfield and J. A. Platts, J. Mol. Model., 2009, 15, 1051.

Auxiliary basis sets for density fitted MP2 calculations: correlation consistent basis sets for the 4d elements. J. G. Hill and J. A. Platts, J. Chem. Theory Comput., 2009, 5, 500.

2008

Spin-coupled description of aromaticity in the retro diels-alder reaction of norbornene. J. G. Hill, D. L. Cooper and P. B. Karadakov, J. Phys. Chem. A, 2008, 112, 12823.

Calculating interaction energies in transition metal complexes with local electron correlation methods. J. G. Hill and J. A. Platts, J. Chem. Phys., 2008, 129, 134101.

Insights into DNA binding of ruthenium arene complexes: role of hydrogen bonding and π stacking. K. Gkionis, J. A. Platts and J. G. Hill, Inorg. Chem., 2008, 47, 3893.

Calculating stacking interactions in nucleic acid base-pair steps using spin-component scaling and local second order Møller-Plesset perturbation theory. J. G. Hill and J. A. Platts, Phys. Chem. Chem. Phys., 2008, 10, 2785.

Auxiliary basis sets for density fitting MP2 calculations: non-relativistic triple-ζ all-electron correlation consistent basis sets for the 3d elements Sc-Zn. J. G. Hill and J. A. Platts, J. Chem. Phys., 2008, 128, 044104.

2007

The unusual electronic mechanism of the [1,5] hydrogen shift in (Z)-1,3-pentadiene predicted by modern valence bond theory. P. B. Karadakov, J. G. Hill and D. L. Cooper, Faraday Discuss., 2007, 135, 285.

Spin-component scaling methods for weak and stacking interactions. J. G. Hill and J. A. Platts, J. Chem. Theory Comput., 2007, 3, 80.

2006

Modern valence bond-like representations of selected D6h “aromatic” rings. J. G. Hill, P. B. Karadakov and D. L. Cooper, J. Phys. Chem. A, 2006, 110, 7913.

Calculation of intermolecular interactions in the benzene dimer using coupled-cluster and local electron correlation methods. J. G. Hill, J. A. Platts and H.-J. Werner, Phys. Chem. Chem. Phys., 2006, 8, 4072.

A spin-coupled study of the claisen rearrangement of allyl vinyl ether. J. G. Hill, P. B. Karadakov and D. L. Cooper, Theor. Chem. Acc., 2006, 115, 212.

The spin-coupled picture of clamped benzenes. J. G. Hill, P. B. Karadakov and D. L. Cooper, Mol. Phys., 2006, 104, 677.